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Abstract:

The rapid expansion of e-learning necessitates robust frameworks to
evaluate and enhance learner experience. This study proposes an innovative
hybrid methodology that integrates machine learning (ML) with fuzzy multi-
criteria decision-making (Fuzzy MCDM) to assess perceived e-learning quality.
Using data from the TBSA (Training for Business Start-up Advisors) program,
we first employ Gradient Boosting with SHAP (SHapley Additive
exPlanations) analysis to objectively determine feature importance from learner
responses. These data-driven weights are then integrated into a Fuzzy TOPSIS
model to manage inherent uncertainties in educational assessments and produce
robust quality dimension rankings.

Our results reveal that Responsiveness/Ease of Use (dimension weight:
0.5714) is the most critical dimension, followed by Tangibility (0.2020),
Assurance (0.1592), and Security/Reliability (0.0674). The hybrid framework
demonstrates substantial explanatory power (R = 0.5156) while providing
interpretable, action- able insights for e-learning optimization. This approach
offers educational institutions a scientifically-grounded methodology for
prioritizing quality improvements and resource allocation.
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An Integrated Predictive-Analytical Modeling Framework
for E-Learning Quality Assessment: Evidence from the TBSA Program

1. Introduction and Background
1.1 The E-Learning Quality Assessment Challenge

The global e-learning market has experienced unprecedented growth,
projected to surpass $1 trillion by 2030, fundamentally transforming
educational delivery worldwide (Global Market Insights, 2023). This rapid
expansion, accelerated by digital transformation and the COVID-19 pandemic,
has highlighted critical challenges in maintaining educational quality and
learner engagement in virtual environments. Despite technological
advancements, institutions struggle with high dropout rates and learner
dissatisfaction, raising fundamental questions about how to effectively evaluate
and enhance e-learning quality (Singh & Thurman, 2019).

Traditional approaches to e-learning quality assessment have
predominantly followed two separate trajectories. On one hand, service quality
models like SERVQUAL and E-S-QUAL have been adapted to educational
contexts, focusing on dimensions such as reliability, responsiveness, and
empathy (Parasuraman et al., 1988; Zeithaml et al., 2002). These models, while
comprehensive, often rely on subjective expert judgments for criterion
weighting, introducing potential biases and limiting objectivity. On the other
hand, educational technology research has emphasized pedagogical elements
including content quality, instructional design, and technological infrastructure
(Mayer, 2017; Garrison & Kanuka, 2004). However, these approaches
frequently employ simplistic statistical methods that fail to capture the complex,
non-linear relationships between quality dimensions and learning outcomes.
1.2 The Emergence of Data-Driven Approaches

Recent advances in educational data mining have demonstrated the
potential of machine learning (ML) for predicting student outcomes and
identifying key success factors (Baker & Inventado, 2014; Romero & Ventura,
2020). Algorithms such as Random Forests, Gradient Boosting, and XGBoost
have shown remarkable performance in capturing complex patterns in
educational data. However, these models often operate as "black boxes,"
offering limited interpretability and insight into the relative importance of
different quality dimensions (Adadi & Berrada, 2018). This interpretability gap
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represents a significant barrier to the practical application of ML in educational
decision-making.

The emergence of explainable Al (XAI) methods, particularly SHAP
(SHapley Additive exPlanations), has addressed this limitation by providing
model-agnostic interpretability (Lundberg & Lee, 2017). SHAP values, rooted
in cooperative game theory, offer a mathematically rigorous approach to
quantifying feature importance, enabling educators to understand which factors
most significantly influence learning outcomes. Despite these advances, ML
approaches still struggle with handling the inherent uncertainty and imprecision
characteristic of educational data, particularly Likert-scale survey responses.
1.3 Fuzzy MCDM in Educational Assessment
Fuzzy Multi-Criteria Decision-Making (MCDM) methods have gained traction
in educational quality assessment due to their ability to handle uncertainty and
vagueness in human judgments (Zadeh, 1965; Chen & Hwang, 1992).
Techniques such as Fuzzy TOPSIS, Fuzzy AHP, and Fuzzy DEMATEL have
been successfully applied to various educational evaluation problems
(Biiyiikozkan et al., 2021). These methods excel at managing the linguistic
ambiguity and subjective perceptions inherent in educational contexts, where
precise numerical assessments often fail to capture the complexity of human
learning experiences.

However, traditional fuzzy MCDM approaches typically depend on expert-
derived weights, which can introduce subjectivity and limit reproducibility
(Tzeng & Huang, 2011). The integration of data-driven weights from ML
models represents a promising direction for enhancing the objectivity and
robustness of fuzzy decision-making in education.
1.4 Research Gap and Contribution
This research addresses a critical gap in the literature by developing a novel
hybrid framework that integrates machine learning with fuzzy MCDM for e-
learning quality assessment. While previous studies have either applied ML for
prediction or used MCDM for evaluation, few have successfully integrated both
approaches to leverage their complementary strengths. Our methodology
uniquely combines:

- The predictive power and objectivity of ML with SHAP-based

interpretability
10
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- The uncertainty-handling capabilities of fuzzy logic through Fuzzy
TOPSIS

- Data-driven weight derivation that eliminates subjective expert bias

This integrated approach enables us to address the fundamental research
question: How can educational institutions objectively identify which
quality dimensions most significantly impact learner satisfaction and
behavioral intentions in e-learning environments, while accounting for the
inherent uncertainty in educational assessments.
The proposed framework represents a significant methodological advancement
in educational analytics, providing both high predictive accuracy and
transparent, actionable insights for educational decision-makers. By bridging
the gap between data-driven prediction and interpretable evaluation, our
approach offers a comprehensive solution to the challenges of e-learning quality
assessment in the digital age.

2. Methodology
2.1 Data Collection and Variable Specification

The study utilizes data from the TBSA e-learning program, comprising

responses from approximately 150 learners. The comprehensive questionnaire

captured:

o Sociodemographic variables: Age, gender, education level, professional
experience, prior e-learning exposure

o Perceived quality dimensions: 10 constructs measured through validated
Likert-scale items

o QOutcome variables: Satisfaction (SAT) and Behavioral Intentions (INT)

The conceptual model organizes these variables into three interconnected
constructs:
- Independent Variables: Ten quality dimensions (FCLT, SEC, UTLT,

CNT, PED, TANG, FIAB, SERVB, ASS, EMP)

- Mediating Variable: Learner Satisfaction (SAT)
- Dependent Variable: Behavioral Intentions (INT)

11
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2.2 Hybrid Analytical Framework
Our methodology follows a sequential three-phase approach:
Phase 1: Machine Learning with SHAP Interpretation
We employed ensemble methods, particularly Gradient Boosting, for their
superior performance in capturing complex, non-linear relationships in
educational data. The model was trained to predict learner satisfaction using the
ten quality dimensions as features:

M
9o = Fa() = ) Y ()
m=1

where 7 is the total number of trees and 4., is the m™ decision tree and v its
associated weight.
The weights of the criteria w; are extracted from the SHAP values. The SHAP

value for a variable j and an observation i is defined by:

o= > SRS u g - pos)
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where: N is the set of variables and f(S) is the model trained on the subset S.
The objective weight of a criterion is obtained by normalization:
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Phase 2: Fuzzy TOPSIS Integration
To handle the inherent uncertainty and imprecision in learner responses, we
integrated the ML-derived weights into a Fuzzy TOPSIS model. Each response

was represented as a triangular fuzzy number:
Consider a fuzzy decision matrix X= (x;)), where a triangular fuzzy number
represents each data point x;;:
%ij = (Ljymyj uig)
Then the normalization of fuzzy values is defined by:

?:1(”17)2

And the matrix weighting is defined by:

rij =
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After normalization and weighting, we define the ideal solutions A* , and anti-
1deal solutions A~ . The distances are calculated as:

At = {miaxul-j,j = 1,2, ...,m} and A~ = {ml_in lij,j = 1,2,...,m}
(7)

The distance of each learners from the ideal and anti-ideal is given by:
m

D} = Zd(ﬁ”,A]ff)
=
m

D; = zd(ﬁij’Aj_)
=

Where d (.) is a distance between fuzzy numbers.
Finally, the proximity score is given by:

D.
;= —F/——,0<(C <1

Phase 3: Hybrid Scoring and Robustness Validation

The final step is to combine the results from the two approaches, machine
learning and Fuzzy TOPSIS, to generate a final ranking of features. The
predictive score provided by Gradient Boosting is compared and integrated with
the proximity score obtained by TOPSIS, in order to ensure double validation
of the results. This strategy reinforces the stability of the ranking and reduces
the risk of erroneous conclusions linked to dependence on a single method. The
final ranking combines the predictive score of the ML model and that of Fuzzy
TOPSIS according to:

Hi=1.3+1-1.C,0<1<1

3. Results and Analysis
This section presents comprehensive findings from our hybrid ML-Fuzzy
MCDM analysis, organized to provide both statistical rigor and practical
interpretability. All analyses were con- ducted using Python 3.9 with Scikit-
learn 1.0.2, SHAP 0.41.0, and custom fuzzy logic implementations.
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3.1 Descriptive Statistics and Preliminary Analysis

Table 2 presents the comprehensive descriptive statistics for all variables after
standardization (mean = 0, SD = 1). This standardization facilitates comparison
across different measurement scales and enhances model convergence. The
standardized means near zero and standard deviations of 1.0 confirm successful
normalization. Negative skewness values for most variables indicate
distributions skewed toward higher satisfaction ratings, common in educational
con- texts where participants tend to rate positively. Kurtosis values show varied
distribution shapes, with CNT and PED displaying leptokurtic distributions
indicating peaked distributions, while others show platykurtic tendencies.
Table 2: Descriptive Statistics of E-Learning Quality Variables (N = 103)

Variable Mean SD Min Median Max Skewness Kurtosis

FCLT 0.000 1.000 -3.273 0.068 1.164 -0.562 -0.098
SEC 0.000 1.000 -1.673 0.232 1.568 0.218 -1.197
UTLT 0.000 1.000 -3.067 0.094 0963 -0.793 -0.036
CNT -0.000 1.000 -2.907 0.086 1.808 -0.371 0.755
PED -0.000 1.000 -3.577 -0.123 1.593 -0.467 1.129
TANG -0.000 1.000 -2.531 -0.125 1.459 -0.140 -0.472
FIAB 0.000 1.000 -3.595 -0.134 1.285 -0.487 0.583
SERVB -0.000 1.000 -2.985 -0.034 1.222 -0.430 -0.112
ASS 0.000 1.000 -2.453 -0.157 1360 -0.125 -0.791
EMP -0.000 1.000 -2.386 0.062 1470 -0.113 -0.824
SAT 0.000 1.000 -2.987 0.240 1.056 -0.463 -0.712

Shapiro-Wilk normality tests revealed that all variables except EMP
significantly deviate from normal distribution (p : 0.05), justifying our use of
non-parametric and robust analytical methods (see Appendix A, Table 6). This
non-normality particularly supports our choice of tree-based ML methods
(Gradient Boosting) which do not assume normality.
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3.2 Correlation Analysis and Bivariate Relationships

Table 3 presents the top correlations with overall satisfaction (SAT), providing
initial insights into bivariate relationships. All correlations were statistically
significant at p 0.01. System Accessibility (ASS) demonstrates the strongest
correlation (r = 0.7254), explaining approximately 52.6% of variance in
satisfaction (r = 0.526). This underscores the critical importance of technical
accessibility in e-learning success. Tangible Interface (TANG) and
Empowerment (EMP) show strong correlations (r= 0.60), highlighting the
significance of interface design and learner autonomy. All dimensions show
moderate to strong positive correlations, con- firming their relevance to learner
satisfaction and validating their inclusion in the model. The correlation matrix
(not shown) revealed moderate inter-correlations among predictor variables
(average r = 0.42), necessitating careful interpretation to avoid multicollinearity
issues.

Table 3: Correlations of Quality Dimensions with Overall Satisfaction (SAT)

Quality Dimension Correlation p-value Strength

(r)
ASS (System Accessibility) 0.7254 ;0.001 Very Strong
TANG (Tangible Interface) 0.6262 ;0.001 Strong
EMP (Empowerment) 0.6058 ;0.001 Strong
PED (Pedagogical Design) 0.5579 i0.001 Moderate-Strong
FCLT (Facilitator Competence) 0.5465 i0.001 Moderate-Strong
CNT (Content Quality) 0.5454 i0.001 Moderate-Strong
FIAB (System Reliability) 0.5145 ;0.001 Moderate
SEC (Service Excellence) 0.5078 ;0.001 Moderate
UTLT (Utilitarian Value) 0.4969 ;0.001 Moderate
SERVB (Service Behavior) 0.4474 ;0.001 Moderate

3.3 Machine Learning Model Performance and Validation
The Gradient Boosting model was rigorously evaluated using 5-fold cross-
validation, achieving robust performance metrics. The cross-validation results
showed R scores ranging from
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0.276 to 0.652 with an average of 0.4636 (0.1432), RMSE ranging from 0.618
to 0.847 with an average of 0.736 (0.091), and MAE ranging from 0.473 to
0.658 with an average of 0.565 (0.077). The final model, trained on the complete
training set (n = 82) and evaluated on the holdout test set (n = 21), yielded an R
of 0.5156, indicating that the model explains 51.56% of variance in learner
satisfaction. The RMSE was 0.6740 and MAE was 0.5075, representing
moderate prediction accuracy. The correlation between predicted and actual
satisfaction scores was r = 0.718 (p 0.001), confirming strong alignment
between predictions and actual satisfaction scores.

The R-value of 0.5156 represents a strong predictive performance in educational
research context, where human behavior introduces substantial unexplained
variance. The relatively consistent cross-validation performance (range: 0.276
to 0.652) indicates reasonable model stability, though some variability suggests
context-dependent factors may influence relation- ships.

3.4 SHAP-based Feature Importance Analysis

Figure 1 presents the SHAP summary plot, while Table 4 details feature
importance rankings based on mean absolute SHAP values, providing model-
agnostic interpretability. System Accessibility (ASS) demonstrates a dominant
role with a mean SHAP value of 0.7993, accounting for 55.8% of total feature
importance, indicating it is the primary driver of learner satisfaction. SHAP
dependence plots revealed a non-linear relationship where satisfaction increases
sharply until ASS reaches moderate levels, then plateaus.

Service Excellence (SEC) and Tangible Interface (TANG) show similar
importance levels (11.6% and 11.3% respectively), together accounting for
nearly one-quarter of total importance. This highlights the combined
significance of service quality and interface design. System Reliability (FIAB),
Pedagogical Design (PED), and Content Quality (CNT) collectively con- tribute
14.5% of importance, representing important but secondary considerations.
Utilitarian Value (UTLT), Empowerment (EMP), Service Behavior (SERVB),
and Facilitator Competence (FCLT) show relatively low SHAP values (j 0.05),
together accounting for only 7.3% of total importance. This suggests these
factors, while statistically significant in correlation analysis, have limited

unique predictive power in the presence of other variables. All features show
16
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positive  SHAP values, indicating that improvements in any dimension
contribute positively to satisfaction, though to varying degrees.
Table 4: SHAP-based Feature Importance Ranking and Impact

Analysis
Mean SHAP Relative In}pact
Feature Rank Importance Direct
Value
(%)
ASS (System Accessibility) 0.7993 1 55.8 Positive
SEC (Service Excellence) 0.1665 2 11.6 Positive
TANG (Tangible Interface) 0.1613 3 11.3 Positive
FIAB (System Reliability) 0.0784 4 5.5 Positive
PED (Pedagogical Design) 0.0702 5 4.9 Positive
CNT (Content Quality) 0.0589 6 4.1 Positive
UTLT (Utilitarian Value) 0.0451 7 32 Positive
EMP (Empowerment) 0.0222 8 1.6 Positive
SERVB (Service Behavior) 0.0185 9 1.3 Positive
FCLT (Facilitator Competence) 0.0173 10 1.2 Positive
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SHAP Feature Importance Beeswarm Plot
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Figure 1: SHAP Feature Importance Summary for E-Learning
Quality Dimensions

The SHAP beeswarm plot revealed that high ASS values consistently
produce large positive SHAP values, while low ASS values produce moderate
negative impacts. This asymmetry suggests that poor accessibility severely
damages satisfaction, while excellent accessibility provides substantial benefits.

3.5Fuzzy-TOPSIS Integration and Hybrid Ranking
The integration of SHAP-derived weights into Fuzzy TOPSIS produced
the comprehensive dimension rankings shown in Table 5 and visualized in
Figure 2. This integration transforms feature-level importance into dimension-
level priorities suitable for strategic decision-making.
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Table 5: Fuzzy TOPSIS Dimension Ranking with SHAP Weights and Strategic
Implications

Dimension Weight Rank Closeness Coefficient Importance Level
Responsiveness/Ease of 0.5714 1 0.682 Critical
Use
Tangibility 0.2020 2 0.534 High
Assurance 0.1592 3 0.419 Medium
Security/Reliability 0.0674 4 0.287 Low

Responsiveness/Ease of Use dominates the quality landscape, accounting
for 57.14% of total importance weight. The high closeness coefficient (0.682)
indicates strong performance relative to ideal solutions. Educational institutions
should allocate approximately 57% of quality improvement resources to
enhancing system accessibility (ASS) and learner empowerment (EMP),
focusing on reducing technical barriers, improving mobile compatibility,
enhancing navigation intuitiveness, and increasing learner control options.

Tangibility represents 20.20% of total importance, indicating substantial
but secondary priority. The closeness coefficient (0.534) suggests moderate
performance with room for improvement. Approximately 20% of resources
should be allocated to interface design, content quality, and pedagogical
effectiveness, with practical focus on enhancing visual design, improving con-
tent organization, diversifying instructional strategies, and ensuring multimedia
quality.

Assurance accounts for 15.92% of importance, representing important but
not dominant considerations. The relatively low closeness coefficient (0.419)
indicates this dimension per- forms below average. Current investment levels
(approximately 16%) should be maintained with focus on cost-effective
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improvements, including enhancing facilitator training, improving response

times to learner queries, and increasing practical relevance of content.
Security/Reliability represents only 6.74% of total importance,

functioning as a hygiene factor. The low closeness coefficient (0.287) suggests

performance near minimum acceptable levels. Baseline functionality should be

ensured with minimal investment (approximately 7%), focusing on maintaining

system uptime, ensuring data security, and providing reliable technical support.

E-Learning Quality Dimensions Ranking (Fuzzy TOPSIS)

Security/Reliabiity 0,0674
Assurance 0.1592
Tangibdity 0.2020
Responsiveness/Ease of Use 0.5714

0.0 01 02 03 0.4 0.5

Normalized Weight

Figure 2: Fuzzy TOPSIS Dimension Ranking Visualization with Confidence
Intervals

Sensitivity analysis varying A in Equation 9 from 0.3 to 0.7 confirmed
ranking stability, with Responsiveness/Ease of Use consistently ranked first in
97% of simulations. Bootstrap resampling (n=1000) produced 95% confidence
intervals for weights: Responsiveness/Ease of Use [0.542, 0.601], Tangibility
[0.183, 0.221], Assurance [0.141, 0.177], Security/Reliability [0.061, 0.074].
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3.6 Comprehensive Analysis Dashboard and Synthesis

Figure 3 presents an integrated dashboard summarizing key findings from
our hybrid analysis, providing a holistic view of e-learning quality assessment.
The dashboard confirms robust predictive accuracy (R = 0.516) with reasonable
error metrics, visualizes the dominance of ASS and secondary importance of
SEC and TANG, illustrates the disproportionate importance of
Responsiveness/Ease of Use through radar charts, shows strong positive
relationship between ASS and SAT (R = 0.526), confirms dimension score
patterns with Responsiveness/Ease of Use showing highest average scores,
reveals clustering among features within dimensions and strong ASS-SAT
connection, demonstrates random residual patterns confirming model
specification adequacy, shows close alignment between predicted and actual
satisfaction distributions, and provides actionable insights for resource
allocation and quality improvement.

The comprehensive analysis reveals a clear hierarchy of e-learning quality
dimensions. Responsiveness/Ease of Use emerges as the paramount concern,
dwarfing other dimensions in importance. These finding challenges traditional
emphasis on content and pedagogy, suggesting that in mature e-learning
environments, accessibility and usability become primary differentia- tors. The
hybrid methodology successfully integrates ML’s predictive power with fuzzy
logic’s uncertainty handling, providing both statistical rigor and practical
interpretability.
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HYBRID ML-FUZZY MCOM FRAMEWORK: E-LEARNING QUALITY ASSESSMENT
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Figure 3: Comprehensive Dashboard of Hybrid ML-Fuzzy MCDM
Analysis Results

4. Discussion
4.1 Theoretical Implications

Our findings challenge several conventional assumptions in e-learning
quality literature. First, the dominance of Responsiveness/Ease of Use over
technical and content dimensions contradicts the prevalent techno-centric
narrative in educational technology research. This suggests that in mature e-
learning environments, usability and accessibility factors may supersede basic
technological considerations in driving learner satisfaction.

Second, the relatively lower importance of Security/Reliability (weight:
0.0674) aligns with the hygiene-motivator theory in educational contexts. These
dimensions appear to function as baseline expectations their absence causes
dissatisfaction, but their presence alone does not drive high satisfaction. This
has profound implications for resource allocation in e-learning development.
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The strong performance of our hybrid methodology validates the
integration of data-driven ML approaches with fuzzy MCDM in educational
research. By deriving weights objectively through SHAP analysis rather than
relying on subjective expert judgments, we enhance the scientific rigor of e-
learning quality assessment while maintaining the ability to handle real- world
uncertainty.

4.2 Practical Implications

For educational institutions and platform developers, our results provide a
clear, actionable roadmap for strategic development and resource allocation.
Priority should be given to usability and accessibility with allocation of 57.14%
of quality improvement resources to enhancing system responsiveness, ease of
use, and accessibility features. Interface and content design should receive
dedicated attention with 20.20% of resources allocated to improving tangible
interface elements, content quality, and pedagogical design. Support systems
optimization requires investment of 15.92% in tutor competence, service
excellence, and support quality. Basic reliability should be maintained with
allocation of 6.74% to ensuring system reliability and security as baseline
expectations.

Our framework enables personalized quality interventions based on
learner profiles and provides a quantitative resource allocation framework for
data-driven budgeting decisions. Institutions can use this methodology to
identify specific quality gaps through feature-level SHAP analysis, prioritize
improvement initiatives based on empirical evidence, monitor quality
improvements over time using the hybrid scoring system, and customize
learning experiences based on individual learner needs.

5. Conclusion
This study successfully addressed the critical challenge of objectively
evaluating e-learning quality by developing and validating an innovative hybrid
framework that integrates machine learning with fuzzy multi-criteria decision-
making. Our research demonstrates that effective e-learning quality assessment
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requires moving beyond traditional subjective evaluations or purely predictive
analytics toward a more nuanced, interpretable approach.

The analysis of TBSA program data reveals several crucial insights that
challenge conventional wisdom in educational technology. Most significantly,
we found that Responsiveness/Ease of Use emerges as the paramount driver of
learner satisfaction, substantially outweighing technical and content
considerations. This finding contradicts the prevalent techno centric narrative in
educational technology and suggests that in mature e-learning environments,
usability supersedes technological sophistication in determining learning
experience quality.

From a methodological perspective, this research makes several
significant contributions that advance the field of educational analytics.
Primarily, it introduces a novel weight derivation process by integrating SHAP
values from machine learning models as objective weights within a Fuzzy
MCDM framework, representing a paradigm shift from traditional reliance on
subjective, expert-dependent weighting. Furthermore, the hybrid framework
pioneers uncertainty- quantified ML for education by fusing predictive analytics
with fuzzy logic, thus moving beyond simple point estimates to provide
confidence intervals that manage the inherent imprecision of perceptual data.

The practical implications of these findings provide a clear, actionable
roadmap for strategic development. Educational institutions should reorient
investment toward usability and accessibility as competitive advantages through
comprehensive interface optimization and user experience design, while
maintaining a strategic approach to platform development that prioritizes
Responsiveness over mere technical optimization.

Future research should explore the application of this hybrid framework
to diverse educational contexts, investigate longitudinal quality dynamics, and
develop real-time quality monitoring systems. By continuing to refine and
expand this methodology, we can build more responsive, effective, and
satisfying e-learning environments that meet the evolving needs of digital
learners.
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A Appendix A: Detailed Statistical Analyses

Table 6: Complete Normality Test Results (Shapiro-Wilk)

Variable W statistic p-value Normality

FCLT 0.8961 0.0000 Non-Normal
SEC 0.8989 0.0000 Non-Normal
UTLT 0.8436 0.0000 Non-Normal
CNT 0.9557 0.0057 Non-Normal
PED 0.9347 0.0004 Non-Normal
TANG 0.9721 0.0312 Non-Normal
FIAB 0.9501 0.0021 Non-Normal
SERVB 0.9618 0.0098 Non-Normal
ASS 0.9743 0.0415 Non-Normal
EMP 0.9832 0.1556 Normal

SAT 0.9402 0.0006 Non-Normal

B  Appendix B: Cross-Validation Results

The Gradient Boosting model was evaluated using 5-fold cross-validation with
the following detailed results:
Table 7: Detailed Cross-Validation Performance Metrics

Fold R RMSE MAE Training Samples

1 0317 0.821 0.642 82
2 0276  0.847 0.658 82
3 0.527 0.702  0.532 &3
4 0.652 0.618 0.473 &3
5 0.545 0.691 0.521 82
Mean 04636 0.736 0.565 82.4

Std 0.1432  0.091 0.077 0.55
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