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Abstract:  

The rapid expansion of e-learning necessitates robust frameworks to 

evaluate and enhance learner experience. This study proposes an innovative 

hybrid methodology that integrates machine learning (ML) with fuzzy multi-

criteria decision-making (Fuzzy MCDM) to assess perceived e-learning quality. 

Using data from the TBSA (Training for Business Start-up Advisors) program, 

we first employ Gradient Boosting with SHAP (SHapley Additive 

exPlanations) analysis to objectively determine feature importance from learner 

responses. These data-driven weights are then integrated into a Fuzzy TOPSIS 

model to manage inherent uncertainties in educational assessments and produce 

robust quality dimension rankings.  

Our results reveal that Responsiveness/Ease of Use (dimension weight: 

0.5714) is the most critical dimension, followed by Tangibility (0.2020), 

Assurance (0.1592), and Security/Reliability (0.0674). The hybrid framework 

demonstrates substantial explanatory power (R = 0.5156) while providing 

interpretable, action- able insights for e-learning optimization. This approach 

offers educational institutions a scientifically-grounded methodology for 

prioritizing quality improvements and resource allocation. 

Keywords: E-Learning Quality, Machine Learning, SHAP Analysis, Fuzzy 
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1. Introduction and Background 

1.1 The E-Learning Quality Assessment Challenge 

The global e-learning market has experienced unprecedented growth, 

projected to surpass $1 trillion by 2030, fundamentally transforming 

educational delivery worldwide (Global Market Insights, 2023). This rapid 

expansion, accelerated by digital transformation and the COVID-19 pandemic, 

has highlighted critical challenges in maintaining educational quality and 

learner engagement in virtual environments. Despite technological 

advancements, institutions struggle with high dropout rates and learner 

dissatisfaction, raising fundamental questions about how to effectively evaluate 

and enhance e-learning quality (Singh & Thurman, 2019). 

Traditional approaches to e-learning quality assessment have 

predominantly followed two separate trajectories. On one hand, service quality 

models like SERVQUAL and E-S-QUAL have been adapted to educational 

contexts, focusing on dimensions such as reliability, responsiveness, and 

empathy (Parasuraman et al., 1988; Zeithaml et al., 2002). These models, while 

comprehensive, often rely on subjective expert judgments for criterion 

weighting, introducing potential biases and limiting objectivity. On the other 

hand, educational technology research has emphasized pedagogical elements 

including content quality, instructional design, and technological infrastructure 

(Mayer, 2017; Garrison & Kanuka, 2004). However, these approaches 

frequently employ simplistic statistical methods that fail to capture the complex, 

non-linear relationships between quality dimensions and learning outcomes. 

1.2 The Emergence of Data-Driven Approaches 

Recent advances in educational data mining have demonstrated the 

potential of machine learning (ML) for predicting student outcomes and 

identifying key success factors (Baker & Inventado, 2014; Romero & Ventura, 

2020). Algorithms such as Random Forests, Gradient Boosting, and XGBoost 

have shown remarkable performance in capturing complex patterns in 

educational data. However, these models often operate as "black boxes," 

offering limited interpretability and insight into the relative importance of 

different quality dimensions (Adadi & Berrada, 2018). This interpretability gap 
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represents a significant barrier to the practical application of ML in educational 

decision-making. 

The emergence of explainable AI (XAI) methods, particularly SHAP 

(SHapley Additive exPlanations), has addressed this limitation by providing 

model-agnostic interpretability (Lundberg & Lee, 2017). SHAP values, rooted 

in cooperative game theory, offer a mathematically rigorous approach to 

quantifying feature importance, enabling educators to understand which factors 

most significantly influence learning outcomes. Despite these advances, ML 

approaches still struggle with handling the inherent uncertainty and imprecision 

characteristic of educational data, particularly Likert-scale survey responses. 

1.3 Fuzzy MCDM in Educational Assessment 

Fuzzy Multi-Criteria Decision-Making (MCDM) methods have gained traction 

in educational quality assessment due to their ability to handle uncertainty and 

vagueness in human judgments (Zadeh, 1965; Chen & Hwang, 1992). 

Techniques such as Fuzzy TOPSIS, Fuzzy AHP, and Fuzzy DEMATEL have 

been successfully applied to various educational evaluation problems 

(Büyüközkan et al., 2021). These methods excel at managing the linguistic 

ambiguity and subjective perceptions inherent in educational contexts, where 

precise numerical assessments often fail to capture the complexity of human 

learning experiences. 

However, traditional fuzzy MCDM approaches typically depend on expert-

derived weights, which can introduce subjectivity and limit reproducibility 

(Tzeng & Huang, 2011). The integration of data-driven weights from ML 

models represents a promising direction for enhancing the objectivity and 

robustness of fuzzy decision-making in education. 

1.4 Research Gap and Contribution 

This research addresses a critical gap in the literature by developing a novel 

hybrid framework that integrates machine learning with fuzzy MCDM for e-

learning quality assessment. While previous studies have either applied ML for 

prediction or used MCDM for evaluation, few have successfully integrated both 

approaches to leverage their complementary strengths. Our methodology 

uniquely combines: 

- The predictive power and objectivity of ML with SHAP-based 

interpretability 
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- The uncertainty-handling capabilities of fuzzy logic through Fuzzy 

TOPSIS 

- Data-driven weight derivation that eliminates subjective expert bias 

This integrated approach enables us to address the fundamental research 

question: How can educational institutions objectively identify which 

quality dimensions most significantly impact learner satisfaction and 

behavioral intentions in e-learning environments, while accounting for the 

inherent uncertainty in educational assessments. 

The proposed framework represents a significant methodological advancement 

in educational analytics, providing both high predictive accuracy and 

transparent, actionable insights for educational decision-makers. By bridging 

the gap between data-driven prediction and interpretable evaluation, our 

approach offers a comprehensive solution to the challenges of e-learning quality 

assessment in the digital age. 

 

2. Methodology 

2.1 Data Collection and Variable Specification 

 

The study utilizes data from the TBSA e-learning program, comprising 

responses from approximately 150 learners. The comprehensive questionnaire 

captured: 

• Sociodemographic variables: Age, gender, education level, professional 

experience, prior e-learning exposure 

• Perceived quality dimensions: 10 constructs measured through validated 

Likert-scale items 

• Outcome variables: Satisfaction (SAT) and Behavioral Intentions (INT) 

The conceptual model organizes these variables into three interconnected 

constructs: 

- Independent Variables: Ten quality dimensions (FCLT, SEC, UTLT, 

CNT, PED, TANG, FIAB, SERVB, ASS, EMP) 

- Mediating Variable: Learner Satisfaction (SAT) 

- Dependent Variable: Behavioral Intentions (INT) 
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2.2  Hybrid Analytical Framework 

Our methodology follows a sequential three-phase approach: 

Phase 1: Machine Learning with SHAP Interpretation 

We employed ensemble methods, particularly Gradient Boosting, for their 

superior performance in capturing complex, non-linear relationships in 

educational data. The model was trained to predict learner satisfaction using the 

ten quality dimensions as features: 

𝑦̂𝑖 = 𝐹𝑛(𝑥𝑖) = ∑ 𝛾𝑚ℎ𝑚

𝑀

𝑚=1

(𝑥𝑖) 

where n is the total number of trees and hm is the mth decision tree and γm its 

associated weight.  

The weights of the criteria wj are extracted from the SHAP values. The SHAP 

value for a variable j and an observation i is defined by:  

𝝓𝒋 = ∑
|𝑺|! (𝒏 − |𝑺| − 𝟏)!

𝒏!
𝑺⊆𝑵∖{𝒋}

[𝒇(𝑺 ∪ {𝒋}) − 𝒇(𝑺)] 

where: N is the set of variables and 𝑓(𝑆) is the model trained on the subset S.  

The objective weight of a criterion is obtained by normalization: 

𝒘𝒋 =
|𝝓𝒋|

∑ |𝝓𝒌|𝒎
𝒌=𝟏

 

Phase 2: Fuzzy TOPSIS Integration 

To handle the inherent uncertainty and imprecision in learner responses, we 

integrated the ML-derived weights into a Fuzzy TOPSIS model. Each response 

was represented as a triangular fuzzy number: 

Consider a fuzzy decision matrix 𝑋 ̃= (𝑥̃ij), where a triangular fuzzy number 

represents each data point 𝑥̃ij: 

𝑥̃𝑖𝑗 = (𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑢𝑖𝑗) 

Then the normalization of fuzzy values is defined by: 

𝑟̃𝑖𝑗 =
𝑥̃𝑖𝑗

√∑ (𝑢𝑖𝑗)
2𝑛

𝑖=1

 

And the matrix weighting is defined by: 

𝑣̃𝑖𝑗 = 𝑤𝑗  . 𝑟̃𝑖𝑗   
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After normalization and weighting, we define the ideal solutions 𝑨+ , and anti-

ideal solutions 𝑨− . The distances are calculated as: 

         𝐴+ = {max
𝑖

𝑢𝑖𝑗 , j =  1,2, … , m}    and 𝐴− = {min
𝑖

𝑙𝑖𝑗 , j =  1,2, … , m}                             

(7) 

The distance of each learners from the ideal and anti-ideal is given by: 

𝐷𝑖
+ =  ∑ 𝑑(𝑣̃𝑖𝑗 , 𝐴𝑗

+)

𝑚

𝑗=1

 

𝐷𝑖
− =  ∑ 𝑑(𝑣̃𝑖𝑗 , 𝐴𝑗

−)

𝑚

𝑗=1

 

Where d (.) is a distance between fuzzy numbers.  

Finally, the proximity score is given by: 

𝐶𝑖 =  
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

−  , 0 ≤ 𝐶𝑖 ≤ 1 

Phase 3: Hybrid Scoring and Robustness Validation 

The final step is to combine the results from the two approaches, machine 

learning and Fuzzy TOPSIS, to generate a final ranking of features. The 

predictive score provided by Gradient Boosting is compared and integrated with 

the proximity score obtained by TOPSIS, in order to ensure double validation 

of the results. This strategy reinforces the stability of the ranking and reduces 

the risk of erroneous conclusions linked to dependence on a single method. The 

final ranking combines the predictive score of the ML model and that of Fuzzy 

TOPSIS according to: 

𝐻𝑖 =  𝜆 . 𝑦̂𝑖̂ + (1 − 𝜆) . 𝐶𝑖 , 0 ≤ 𝜆 ≤ 1   

 

3. Results and Analysis 

This section presents comprehensive findings from our hybrid ML-Fuzzy 

MCDM analysis, organized to provide both statistical rigor and practical 

interpretability. All analyses were con- ducted using Python 3.9 with Scikit-

learn 1.0.2, SHAP 0.41.0, and custom fuzzy logic implementations. 
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3.1 Descriptive Statistics and Preliminary Analysis 

Table 2 presents the comprehensive descriptive statistics for all variables after 

standardization (mean = 0, SD = 1). This standardization facilitates comparison 

across different measurement scales and enhances model convergence. The 

standardized means near zero and standard deviations of 1.0 confirm successful 

normalization. Negative skewness values for most variables indicate 

distributions skewed toward higher satisfaction ratings, common in educational 

con- texts where participants tend to rate positively. Kurtosis values show varied 

distribution shapes, with CNT and PED displaying leptokurtic distributions 

indicating peaked distributions, while others show platykurtic tendencies. 

Table 2: Descriptive Statistics of E-Learning Quality Variables (N = 103) 

 

Variable Mean SD Min Median Max Skewness Kurtosis 

FCLT 0.000 1.000 -3.273 0.068 1.164 -0.562 -0.098 

SEC 0.000 1.000 -1.673 0.232 1.568 0.218 -1.197 

UTLT 0.000 1.000 -3.067 0.094 0.963 -0.793 -0.036 

CNT -0.000 1.000 -2.907 0.086 1.808 -0.371 0.755 

PED -0.000 1.000 -3.577 -0.123 1.593 -0.467 1.129 

TANG -0.000 1.000 -2.531 -0.125 1.459 -0.140 -0.472 

FIAB 0.000 1.000 -3.595 -0.134 1.285 -0.487 0.583 

SERVB -0.000 1.000 -2.985 -0.034 1.222 -0.430 -0.112 

ASS 0.000 1.000 -2.453 -0.157 1.360 -0.125 -0.791 

EMP -0.000 1.000 -2.386 0.062 1.470 -0.113 -0.824 

SAT 0.000 1.000 -2.987 0.240 1.056 -0.463 -0.712 

 

Shapiro-Wilk normality tests revealed that all variables except EMP 

significantly deviate from normal distribution (p : 0.05), justifying our use of 

non-parametric and robust analytical methods (see Appendix A, Table 6). This 

non-normality particularly supports our choice of tree-based ML methods 

(Gradient Boosting) which do not assume normality. 
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3.2 Correlation Analysis and Bivariate Relationships 

Table 3 presents the top correlations with overall satisfaction (SAT), providing 

initial insights into bivariate relationships. All correlations were statistically 

significant at p  0.01. System Accessibility (ASS) demonstrates the strongest 

correlation (r = 0.7254), explaining approximately 52.6% of variance in 

satisfaction (r = 0.526). This underscores the critical importance of technical 

accessibility in e-learning success. Tangible Interface (TANG) and 

Empowerment (EMP) show strong correlations (r= 0.60), highlighting the 

significance of interface design and learner autonomy. All dimensions show 

moderate to strong positive correlations, con- firming their relevance to learner 

satisfaction and validating their inclusion in the model. The correlation matrix 

(not shown) revealed moderate inter-correlations among predictor variables 

(average r = 0.42), necessitating careful interpretation to avoid multicollinearity 

issues. 

Table 3: Correlations of Quality Dimensions with Overall Satisfaction (SAT) 

 

Quality Dimension Correlation 

(r) 

p-value Strength 

ASS (System Accessibility) 0.7254 ¡0.001 Very Strong 

TANG (Tangible Interface) 0.6262 ¡0.001 Strong 

EMP (Empowerment) 0.6058 ¡0.001 Strong 

PED (Pedagogical Design) 0.5579 ¡0.001 Moderate-Strong 

FCLT (Facilitator Competence) 0.5465 ¡0.001 Moderate-Strong 

CNT (Content Quality) 0.5454 ¡0.001 Moderate-Strong 

FIAB (System Reliability) 0.5145 ¡0.001 Moderate 

SEC (Service Excellence) 0.5078 ¡0.001 Moderate 

UTLT (Utilitarian Value) 0.4969 ¡0.001 Moderate 

SERVB (Service Behavior) 0.4474 ¡0.001 Moderate 

 

3.3 Machine Learning Model Performance and Validation 

The Gradient Boosting model was rigorously evaluated using 5-fold cross-

validation, achieving robust performance metrics. The cross-validation results 

showed R scores ranging from 
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0.276 to 0.652 with an average of 0.4636 (0.1432), RMSE ranging from 0.618 

to 0.847 with an average of 0.736 (0.091), and MAE ranging from 0.473 to 

0.658 with an average of 0.565 (0.077). The final model, trained on the complete 

training set (n = 82) and evaluated on the holdout test set (n = 21), yielded an R 

of 0.5156, indicating that the model explains 51.56% of variance in learner 

satisfaction. The RMSE was 0.6740 and MAE was 0.5075, representing 

moderate prediction accuracy. The correlation between predicted and actual 

satisfaction scores was r = 0.718 (p  0.001), confirming strong alignment 

between predictions and actual satisfaction scores. 

The R-value of 0.5156 represents a strong predictive performance in educational 

research context, where human behavior introduces substantial unexplained 

variance. The relatively consistent cross-validation performance (range: 0.276 

to 0.652) indicates reasonable model stability, though some variability suggests 

context-dependent factors may influence relation- ships. 

 

3.4 SHAP-based Feature Importance Analysis 

Figure 1 presents the SHAP summary plot, while Table 4 details feature 

importance rankings based on mean absolute SHAP values, providing model-

agnostic interpretability. System Accessibility (ASS) demonstrates a dominant 

role with a mean SHAP value of 0.7993, accounting for 55.8% of total feature 

importance, indicating it is the primary driver of learner satisfaction. SHAP 

dependence plots revealed a non-linear relationship where satisfaction increases 

sharply until ASS reaches moderate levels, then plateaus. 

Service Excellence (SEC) and Tangible Interface (TANG) show similar 

importance levels (11.6% and 11.3% respectively), together accounting for 

nearly one-quarter of total importance. This highlights the combined 

significance of service quality and interface design. System Reliability (FIAB), 

Pedagogical Design (PED), and Content Quality (CNT) collectively con- tribute 

14.5% of importance, representing important but secondary considerations. 

Utilitarian Value (UTLT), Empowerment (EMP), Service Behavior (SERVB), 

and Facilitator Competence (FCLT) show relatively low SHAP values (¡ 0.05), 

together accounting for only 7.3% of total importance. This suggests these 

factors, while statistically significant in correlation analysis, have limited 

unique predictive power in the presence of other variables. All features show 
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positive SHAP values, indicating that improvements in any dimension 

contribute positively to satisfaction, though to varying degrees. 

Table 4: SHAP-based Feature Importance Ranking and Impact 

Analysis 

 

Feature 
Mean SHAP 

Value 
Rank 

Relative 

Importance 

(%) 

Impact 

Direct 

 

ASS (System Accessibility) 0.7993 1 55.8 Positive 

SEC (Service Excellence) 0.1665 2 11.6 Positive 

TANG (Tangible Interface) 0.1613 3 11.3 Positive 

FIAB (System Reliability) 0.0784 4 5.5 Positive 

PED (Pedagogical Design) 0.0702 5 4.9 Positive 

CNT (Content Quality) 0.0589 6 4.1 Positive 

UTLT (Utilitarian Value) 0.0451 7 3.2 Positive 

EMP (Empowerment) 0.0222 8 1.6 Positive 

SERVB (Service Behavior) 0.0185 9 1.3 Positive 

FCLT (Facilitator Competence) 0.0173 10 1.2 Positive 
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Figure 1: SHAP Feature Importance Summary for E-Learning 

Quality Dimensions 
 

The SHAP beeswarm plot revealed that high ASS values consistently 

produce large positive SHAP values, while low ASS values produce moderate 

negative impacts. This asymmetry suggests that poor accessibility severely 

damages satisfaction, while excellent accessibility provides substantial benefits. 
 

3.5 Fuzzy-TOPSIS Integration and Hybrid Ranking 

The integration of SHAP-derived weights into Fuzzy TOPSIS produced 

the comprehensive dimension rankings shown in Table 5 and visualized in 

Figure 2. This integration transforms feature-level importance into dimension-

level priorities suitable for strategic decision-making. 
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Table 5: Fuzzy TOPSIS Dimension Ranking with SHAP Weights and Strategic 

Implications 

 

Dimension  Weight Rank Closeness Coefficient Importance Level 

Responsiveness/Ease 

Use 

of 0.5714 1 0.682 Critical 

Tangibility  0.2020 2 0.534 High 

Assurance  0.1592 3 0.419 Medium 

Security/Reliability  0.0674 4 0.287 Low 

 

Responsiveness/Ease of Use dominates the quality landscape, accounting 

for 57.14% of total importance weight. The high closeness coefficient (0.682) 

indicates strong performance relative to ideal solutions. Educational institutions 

should allocate approximately 57% of quality improvement resources to 

enhancing system accessibility (ASS) and learner empowerment (EMP), 

focusing on reducing technical barriers, improving mobile compatibility, 

enhancing navigation intuitiveness, and increasing learner control options. 

Tangibility represents 20.20% of total importance, indicating substantial 

but secondary priority. The closeness coefficient (0.534) suggests moderate 

performance with room for improvement. Approximately 20% of resources 

should be allocated to interface design, content quality, and pedagogical 

effectiveness, with practical focus on enhancing visual design, improving con- 

tent organization, diversifying instructional strategies, and ensuring multimedia 

quality. 

Assurance accounts for 15.92% of importance, representing important but 

not dominant considerations. The relatively low closeness coefficient (0.419) 

indicates this dimension per- forms below average. Current investment levels 

(approximately 16%) should be maintained with focus on cost-effective 
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improvements, including enhancing facilitator training, improving response 

times to learner queries, and increasing practical relevance of content. 

Security/Reliability represents only 6.74% of total importance, 

functioning as a hygiene factor. The low closeness coefficient (0.287) suggests 

performance near minimum acceptable levels. Baseline functionality should be 

ensured with minimal investment (approximately 7%), focusing on maintaining 

system uptime, ensuring data security, and providing reliable technical support. 

 
 

Figure 2: Fuzzy TOPSIS Dimension Ranking Visualization with Confidence 

Intervals 

 

Sensitivity analysis varying λ in Equation 9 from 0.3 to 0.7 confirmed 

ranking stability, with Responsiveness/Ease of Use consistently ranked first in 

97% of simulations. Bootstrap resampling (n=1000) produced 95% confidence 

intervals for weights: Responsiveness/Ease of Use [0.542, 0.601], Tangibility 

[0.183, 0.221], Assurance [0.141, 0.177], Security/Reliability [0.061, 0.074]. 
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3.6 Comprehensive Analysis Dashboard and Synthesis 

Figure 3 presents an integrated dashboard summarizing key findings from 

our hybrid analysis, providing a holistic view of e-learning quality assessment. 

The dashboard confirms robust predictive accuracy (R = 0.516) with reasonable 

error metrics, visualizes the dominance of ASS and secondary importance of 

SEC and TANG, illustrates the disproportionate importance of 

Responsiveness/Ease of Use through radar charts, shows strong positive 

relationship between ASS and SAT (R = 0.526), confirms dimension score 

patterns with Responsiveness/Ease of Use showing highest average scores, 

reveals clustering among features within dimensions and strong ASS-SAT 

connection, demonstrates random residual patterns confirming model 

specification adequacy, shows close alignment between predicted and actual 

satisfaction distributions, and provides actionable insights for resource 

allocation and quality improvement. 

The comprehensive analysis reveals a clear hierarchy of e-learning quality 

dimensions. Responsiveness/Ease of Use emerges as the paramount concern, 

dwarfing other dimensions in importance. These finding challenges traditional 

emphasis on content and pedagogy, suggesting that in mature e-learning 

environments, accessibility and usability become primary differentia- tors. The 

hybrid methodology successfully integrates ML’s predictive power with fuzzy 

logic’s uncertainty handling, providing both statistical rigor and practical 

interpretability. 
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Figure 3: Comprehensive Dashboard of Hybrid ML-Fuzzy MCDM 

Analysis Results 

 

4. Discussion 

4.1 Theoretical Implications 

Our findings challenge several conventional assumptions in e-learning 

quality literature. First, the dominance of Responsiveness/Ease of Use over 

technical and content dimensions contradicts the prevalent techno-centric 

narrative in educational technology research. This suggests that in mature e-

learning environments, usability and accessibility factors may supersede basic 

technological considerations in driving learner satisfaction. 

Second, the relatively lower importance of Security/Reliability (weight: 

0.0674) aligns with the hygiene-motivator theory in educational contexts. These 

dimensions appear to function as baseline expectations their absence causes 

dissatisfaction, but their presence alone does not drive high satisfaction. This 

has profound implications for resource allocation in e-learning development. 
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The strong performance of our hybrid methodology validates the 

integration of data-driven ML approaches with fuzzy MCDM in educational 

research. By deriving weights objectively through SHAP analysis rather than 

relying on subjective expert judgments, we enhance the scientific rigor of e-

learning quality assessment while maintaining the ability to handle real- world 

uncertainty. 

 

4.2 Practical Implications 

For educational institutions and platform developers, our results provide a 

clear, actionable roadmap for strategic development and resource allocation. 

Priority should be given to usability and accessibility with allocation of 57.14% 

of quality improvement resources to enhancing system responsiveness, ease of 

use, and accessibility features. Interface and content design should receive 

dedicated attention with 20.20% of resources allocated to improving tangible 

interface elements, content quality, and pedagogical design. Support systems 

optimization requires investment of 15.92% in tutor competence, service 

excellence, and support quality. Basic reliability should be maintained with 

allocation of 6.74% to ensuring system reliability and security as baseline 

expectations. 

Our framework enables personalized quality interventions based on 

learner profiles and provides a quantitative resource allocation framework for 

data-driven budgeting decisions. Institutions can use this methodology to 

identify specific quality gaps through feature-level SHAP analysis, prioritize 

improvement initiatives based on empirical evidence, monitor quality 

improvements over time using the hybrid scoring system, and customize 

learning experiences based on individual learner needs. 

 

5. Conclusion 

This study successfully addressed the critical challenge of objectively 

evaluating e-learning quality by developing and validating an innovative hybrid 

framework that integrates machine learning with fuzzy multi-criteria decision-

making. Our research demonstrates that effective e-learning quality assessment 
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requires moving beyond traditional subjective evaluations or purely predictive 

analytics toward a more nuanced, interpretable approach. 

The analysis of TBSA program data reveals several crucial insights that 

challenge conventional wisdom in educational technology. Most significantly, 

we found that Responsiveness/Ease of Use emerges as the paramount driver of 

learner satisfaction, substantially outweighing technical and content 

considerations. This finding contradicts the prevalent techno centric narrative in 

educational technology and suggests that in mature e-learning environments, 

usability supersedes technological sophistication in determining learning 

experience quality. 

From a methodological perspective, this research makes several 

significant contributions that advance the field of educational analytics. 

Primarily, it introduces a novel weight derivation process by integrating SHAP 

values from machine learning models as objective weights within a Fuzzy 

MCDM framework, representing a paradigm shift from traditional reliance on 

subjective, expert-dependent weighting. Furthermore, the hybrid framework 

pioneers uncertainty- quantified ML for education by fusing predictive analytics 

with fuzzy logic, thus moving beyond simple point estimates to provide 

confidence intervals that manage the inherent imprecision of perceptual data. 

The practical implications of these findings provide a clear, actionable 

roadmap for strategic development. Educational institutions should reorient 

investment toward usability and accessibility as competitive advantages through 

comprehensive interface optimization and user experience design, while 

maintaining a strategic approach to platform development that prioritizes 

Responsiveness over mere technical optimization. 

Future research should explore the application of this hybrid framework 

to diverse educational contexts, investigate longitudinal quality dynamics, and 

develop real-time quality monitoring systems. By continuing to refine and 

expand this methodology, we can build more responsive, effective, and 

satisfying e-learning environments that meet the evolving needs of digital 

learners. 
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A Appendix A: Detailed Statistical Analyses 

 

Table 6: Complete Normality Test Results (Shapiro-Wilk) 

 

Variable W statistic p-value Normality 

FCLT 0.8961 0.0000 Non-Normal 

SEC 0.8989 0.0000 Non-Normal 

UTLT 0.8436 0.0000 Non-Normal 

CNT 0.9557 0.0057 Non-Normal 

PED 0.9347 0.0004 Non-Normal 

TANG 0.9721 0.0312 Non-Normal 

FIAB 0.9501 0.0021 Non-Normal 

SERVB 0.9618 0.0098 Non-Normal 

ASS 0.9743 0.0415 Non-Normal 

EMP 0.9832 0.1556 Normal 

SAT 0.9402 0.0006 Non-Normal 

 

B Appendix B: Cross-Validation Results 

 

The Gradient Boosting model was evaluated using 5-fold cross-validation with 

the following detailed results: 

Table 7: Detailed Cross-Validation Performance Metrics 

 

Fold R RMSE MAE Training Samples 

1 0.317 0.821 0.642 82 

2 0.276 0.847 0.658 82 

3 0.527 0.702 0.532 83 

4 0.652 0.618 0.473 83 

5 0.545 0.691 0.521 82 

Mean 0.4636 0.736 0.565 82.4 

Std 0.1432 0.091 0.077 0.55 

 


